Tuesday, April 10, 2012

Neuro Chips

Abstract:
Neurochip based on light-addressable potentiometric sensor (LAPS), whose sensing elements are excitable cells, can monitor electrophysiological properties of cultured neuron networks with cellular signals well analyzed. Here I am reporting a kind of neurochip with rat pheochromocytoma (PC12) cells hybrid with LAPS and a method of de-noising signals based on wavelet transform. Cells were cultured on LAPS for several days to form networks, and we then used LAPS system to detect the extracellular potentials with signals de-noised according to decomposition in the time-frequency space. The signal was decomposed into various scales, and coefficients were processed based on the properties of each layer. At last, signal was reconstructed based on the new coefficients. The results show that after de-noising, baseline drift is removed and signal-to-noise ratio is increased. It suggests that the neurochip of PC12 cells coupled to LAPS is stable and suitable for long-term and non-invasive measurement of cell electrophysiological properties with wavelet transform, taking advantage of its time-frequency localization analysis to reduce noise.
Introduction;
Until recently, neurobiologists have used computers for simulation, data collection, and data analysis, but not to interact directly with nerve tissue in live, behaving animals. Although digital computers and nerve tissue both use voltage waveforms to transmit and process information, engineers and neurobiologists have yet to cohesively link the electronic signalling of digital computers with the electronic signalling of nerve tissue in freely behaving animals.
Recent advances in microelectromechanical systems (MEMS), CMOS electronics, and embedded computer systems will finally let us link computer circuitry to neural cells in live animals and, in particular, to re-identifiable cells with specific, known neural functions. The key components of such a brain-computer system include neural probes, analog electronics, and a miniature microcomputer. Researchers developing neural probes such as sub- micron MEMS probes, microclamps, microprobe arrays, and similar structures can now penetrate and make electrical contact with nerve cells with out causing significant or long-term damage to probes or cells.        

 Read more >>  Neuro Chips

No comments:

Post a Comment